University of Virginia Library

Search this document 
  
  
  
  

expand section1. 
expand section2. 
expand section3. 
expand section4. 
expand section5. 
expand section6. 
expand section7. 
collapse section8. 
  
  
  
  
Which is the Best?
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
expand section9. 
expand section10. 
expand section11. 
expand section12. 
expand section13. 
expand section14. 
expand section15. 
expand section16. 
expand section17. 
expand section18. 
expand section19. 
expand section20. 
expand section21. 
expand section22. 
expand section23. 
expand section24. 
expand section25. 
expand section26. 
expand section27. 
 28. 

Which is the Best?

Right here an established mathematical quantity is involved. A small plane surface offers less resistance to the air than a large one and consequently can attain a higher rate of speed. As explained further on in this chapter speed is an important factor in the matter of weight-sustaining capacity. A machine that travels one-third faster than another can get along with one-half the

surface area of the latter without affecting the load. See the closing paragraph of this chapter on this point. In theory the construction is also the simplest, but this is not always found to be so in practice. The designing and carrying into execution of plans for an extensive area like that of a monoplane involves great skill and cleverness in getting a framework that will be strong enough to furnish the requisite support without an undue

64

excess of weight. This proposition is greatly simplified in the biplane and, while the speed attained by the latter may not be quite so great as that of the monoplane, it has much larger weight-carrying capacity.