University of Virginia Library

Search this document 
  
  
  
  

expand section1. 
expand section2. 
expand section3. 
expand section4. 
expand section5. 
expand section6. 
expand section7. 
expand section8. 
expand section9. 
collapse section10. 
  
  
  
  
  
  
Importance of Engine Power.
  
  
  
expand section11. 
expand section12. 
expand section13. 
expand section14. 
expand section15. 
expand section16. 
expand section17. 
expand section18. 
expand section19. 
expand section20. 
expand section21. 
expand section22. 
expand section23. 
expand section24. 
expand section25. 
expand section26. 
expand section27. 
 28. 

Importance of Engine Power.

While these figures are authentic, they are in a way misleading, as the important factor of engine power is not taken into consideration. Let us recall the fact that it is the engine power which keeps the machine in motion, and that it is only while in motion that the machine will remain suspended in the air. Hence, to attribute

the support solely to the surface area is erroneous. True, that once under headway the planes contribute largely to the sustaining effect, and are absolutely essential in aerial navigation—the motor could not rise without them—still, when it comes to a question of weight-sustaining power, we must also figure on the engine capacity.

106

In the Wright machine, in which there is a lifting capacity of approximately 2 1/4 pounds to the square foot of surface area, an engine of only 25 horsepower is used. In the Curtiss, which has a lifting capacity of 2 1/2 pounds per square foot, the engine is of 50 horsepower. This is another of the peculiarities of aerial construction and navigation. Here we have a gain of 1/4 pound in weight-lifting capacity with an expenditure of double the horsepower. It is this feature which enables Curtiss

to get along with a smaller surface area of supporting planes at the expense of a big increase in engine power.