University of Virginia Library

Search this document 
  
  
  
  
  
  

  
collapse section 
  
  
collapse section 
  
  
  
collapse section 
  
  
collapse section 
  
  
  
  
collapse section 
  
collapse section 
collapse section 
  
collapse section 
  
  
  
collapse section 
  
collapse section 
  
collapse section 
  
collapse section 
  
  
  
  
  
  
  
  
collapse section 
  
  
  
  
  
  
  
collapse section 
  
  
  
  
collapse section 
collapse section 
  
  
  
  
collapse section 
  
  
  
  
collapse section 
  
  
  
  
  
collapse section 
  
  
  
collapse section 
  
  
  
  
  
  
  
collapse section 
  
  
  
  
  
  
  
  
collapse section 
collapse section 
 I. 
 II. 
 III. 
  
  
collapse section 
 I. 
 II. 
 III. 
  
  
  
  
collapse section 
  
collapse section 
 I. 
 II. 
 III. 
 IV. 
 V. 
  
  
  
  
collapse section 
  
  
collapse section 
collapse sectionI. 
  
 II. 
collapse section 
  
  
  
  
  
  
  
collapse section 
 I. 
 II. 
 III. 
  
  
  
collapse section 
  
  
  
  
  
  
  
  
  
  
collapse section 
  
  
  
  
  
  
collapse section 
 I. 
 II. 
 III. 
 IV. 
  
  
  
collapse section 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
collapse section 
  
  
  
  
collapse section 
  
  
  
collapse section 
  
  
  
  
  
collapse section 
 I. 
  
  
  
  
  
  
  
collapse section 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
collapse section 
 1-2-3. 
 7-8-9. 
 10-11-12. 
 13-14-15. 
 16-17-18. 
 21-22-23. 
 26. 
 31-32-33. 
 34-35-36. 
 40-41-42. 
 43-44-45. 
collapse section 
 100. 
 106. 
 107. 
 108. 
 109. 
 110. 
 111. 
 158-159-160. 
collapse section 
 200-201-202. 
 250-251-252. 
collapse section 
CHEMISTRY AND CHEMICAL ENGINEERING
 300-301-302. 
 350-351-352. 
 303-304-305. 
 353-354-355. 
 309-310-311. 
 359-360-361. 
 312-313-314. 
 362-363-364. 
 315-316-317. 
 365-366-367. 
 318-319-320. 
 368-369-370. 
 321-322-323. 
 371-372-373. 
 324-325-326. 
 327-328-329. 
 340-341-342. 
 374-375-376. 
 383-384-385. 
 386-387-388. 
collapse section 
 400-401-402. 
 450-451-452. 
collapse section 
 521. 
 522. 
 523. 
 524. 
 525. 
 526. 
 527. 
 528. 
 529. 
 530. 
 581. 
collapse section 
 650. 
 661. 
 662. 
 663. 
 670. 
 680. 
 690. 
 691. 
 692. 
collapse section 
 701. 
 703. 
 705. 
 708. 
 709. 
 715. 
 718. 
 720. 
 721. 
 722. 
 723. 
 725. 
collapse section 
 751. 
 755. 
collapse section 
 800. 
 801. 
 802. 
 803. 
 804. 
 805. 
 806. 
 807. 
 808. 
 811. 
 812. 
 813. 
 815. 
 820. 
 821. 
 822. 
 826. 
 827. 
 830. 
 833. 
 834. 
 835. 
 836. 
 860. 
 863. 
 867-868. 
  
collapse section 
 900. 
 901. 
 902. 
 903. 
 904. 
 905. 
 906. 
 907. 
 910. 
 911. 
 916-917-918. 
 920. 
 925. 
 930-931-932. 
 940-941-942. 
collapse section 
 950-951. 
 953-954-955. 
 956. 
 960-961. 
 966-967-968. 
 975. 
 980-981. 
 990-991-992. 
  
  
  
  
  
  
  
collapse section 
  
  
  
  
  
  
  
collapse section 
collapse section 
collapse sectionI. 
 I. 
 II. 
 III. 
 IV. 
 V. 
 VI. 
collapse sectionII. 
  
  
  
  
  
  
  
  
collapse section 
  
  
  
  
collapse section 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
collapse section 
  
  
  
  
  
  
  
  
  
collapse section 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
collapse section 
  
collapse section 
  
 I. 
 II. 
 III. 
collapse section 
  
  
  
collapse section 
  
  
  
  
  
collapse section 
  
  
  
  
collapse section 
  
  
collapse section 
collapse section 
collapse sectionVII. 
  
collapse sectionXIII. 
  
  

  
  

CHEMISTRY AND CHEMICAL ENGINEERING

300-301-302: General Chemistry:

10:30-11:30, T. Th. S.

350-351-352: Chemistry Laboratory:

11:30- 1:30, T. Th. S.

The fundamental principles and phenomena of inorganic, organic, and physical
chemistry, and the foundations of analytical chemistry. Most of the time is
devoted to inorganic phenomena. (Fall, Winter, Spring.)


319

Page 319

Textbooks: Richardson: General Chemistry; Carter: Laboratory Course in
General Chemistry;
Long and Anderson: Chemical Calculations.

Professor Carter, Dr. Bell and Assistants.

303-304-305: Chemical Principles:

8:30-9:30, T. Th. S.

353-354-355: Quantitative Analysis Laboratory:

2:30-5:30, M. W. F.

Chemistry 300-301-302 and 350-351-352 prerequisite.

Two hours of lecture per week are devoted to chemical principles, as an
intermediate course designed to bridge the gap between general chemistry and
physical chemistry, the principles touched upon during the first-year course are
restated and treated from a more advanced viewpoint.

The accompanying laboratory course is designed to introduce the theory and
practice of volumetric and gravimetric methods of analysis, including an introduction
to electroanalysis. Nine hours per week, including one demonstration or
recitation on the technique and theory of quantitative analysis. (Fall, Winter,
Spring.) (Not given after session 1934-35.)

Professor Yoe and Assistant.

309-310-311: Organic Chemistry:

10:30-11:30, M. W. F.

359-360-361: Organic Chemistry Laboratory:

2:30-5:30, W. F.

Chemistry 300-301-302 and 350-351-352 prerequisite.

An introduction to the study of the compounds of carbon, including the
application of modern chemical theory to such compounds and their reactions.
(Fall, Winter, Spring.) (Not required after session 1935-36.)

Professor Bird and Assistants.

312-313-314: Organic Chemistry:

11:30-12:30, T. Th. S.

362-363-364: Organic Chemistry Laboratory:

2:30-5:30, M.

Chemistry 300-301-302 and 350-351-352 prerequisite.

An introductory study of Organic Chemistry. Typical reactions are discussed
largely around questions and problems which illustrate chemical principles and
reaction tendencies. Intrinsic influencing factors, conditions and the mechanisms
of reactions are stressed. The laboratory work: An experimental study of unit
processes and the control of reactions by imposed conditions. A thorough study
of the textbook is called for in connection with every experiment. Parallel reading.
3 hours of lecture and 3 hours of laboratory per week. (Fall, Winter,
Spring.) (Required beginning session 1935-36.)

Textbooks: Bird: Typical Reactions of Organic Compounds; Laboratory
Notes
and Groggin's Unit Processes for parallel study.

Professor Bird and Assistants.

315-316-317: Qualitative Analysis:

8:30-9:30, T. Th.

365-366-367: Qualitative Analysis Laboratory:

2:30-5:30, T. or Th.

Chemistry 300-301-302 and 350-351-352 prerequisite.

A course devoted to the study of systematic qualitative analysis. In the lecture
work special emphasis is given to the theoretical foundations of analytical
chemistry. 2 hours of lecture and 3 hours of laboratory per week. (Fall, Winter,
Spring.) (Required beginning session 1935-36.)

Textbooks: Noyes: Qualitative Chemical Analysis; Engelder: Calculations
of Qualitative Analysis.

Professor Yoe and Assistants.


320

Page 320

318-319-320: Quantitative Analysis:

Lecture by appointment.

368-369-370: Quantitative Analysis Laboratory:

2:30-5:30, M. W. F.

Chemistry 315-316-317 and 365-366-367 prerequisite.

An introductory course in volumetric and gravimetric methods of analysis.
9 hours per week, including 1 lecture or recitation on the technique and theory of
quantitative analysis. (Fall, Winter, Spring.) (Required beginning session
1936-37.)

Textbook: Fales: Inorganic Quantitative Analysis.

Professor Yoe and Assistant.

321-322-323: Physical Chemistry:

12:30-1:30, M. W. F.

371-372-373: Physical Chemistry Laboratory:

2:30-5:30, T. Th.

Chemistry 303-304-305 or 315-316-317 prerequisite, as well as some knowledge
of the Calculus and previous training in Physics.

An introductory study of atomic structure theory, kinetic theory and the
principle of the conservation of energy form the foundations of the study of
gases, liquids, solids, solutions and rates of reaction. A brief study of the direction
of chemical change is then followed by the consideration of homogeneous
and heterogeneous equilibria. (Fall, Winter, Spring.)

Textbooks: Taylor: Elementary Physical Chemistry; Daniels, Mathews and
Williams: Experimental Physical Chemistry.

Professor Benton, Assistant Professor Spencer and Assistant.

324-325-326: Principles of Chemical Engineering:

9:30-10:30, M. W. F.

Chemistry 321-322-323 prerequisite.

A course designed to give the prospective chemical engineer a thorough
foundation in the unit operations. Regularly taken in the fourth year. Practice
in the application of the principles involved is given by the solution of numerous
type problems in which quantitative treatment is emphasized. Attention is first
devoted to a detailed study of flow of fluids and flow of heat, since these topics
are fundamental in the subsequent development of unit operations in Chemical
Engineering. These subjects are followed by evaporation, humidification, drying
and distillation. Facility is developed in the stoichiometry of chemical industry.
Plant inspection trips are made from time to time. Lectures and recitations, 3
hours a week. (Fall, Winter, Spring.)

Textbooks: Walker, Lewis and McAdams: Principles of Chemical Engineering;
Badger and McCabe: Elements of Chemical Engineering; Perry:
Chemical Engineers' Handbook.

Associate Professor Hitchcock.

327-328-329: Advanced Chemical Engineering:

10:30-11:30, M. W. F.

Chemical Engineering 324-325-326 prerequisite.

Regularly taken in the graduate year by candidates for the Ch. E. degree.
The subjects of distillation and drying are treated in more detail than in the
preliminary course, while the additional subjects of filtration, absorption, and extraction
are taken up. Further practice is had in applications of calculus to the
solutions of problems in these fields. Principles in the flow of fluids and flow
of heat are used in solving problems of more advanced character. Recent developments
in Chemical Engineering are studied. Lectures and recitations, 3
hours a week. (Fall, Winter, Spring.)


321

Page 321

Textbooks: Walker, Lewis and McAdams: Principles of Chemical Engineering;
McAdams: Heat Transmission.

Associate Professor Hitchcock.

340-341-342: Applied Chemistry:

8:30-9:30, M. W. F.

Chemistry 309-310-311 or 312-313-314 and 321-322-323 prerequisite.

The lectures and recitations in this course are devoted to the study of fundamental
principles underlying the more important phases of industrial chemistry,
including both theoretical and economic problems. A considerable amount of
collateral reading in descriptive industrial chemistry is assigned, and written
reports involving use of the literature are required. Better appreciation of the
quantitative relationships existing in the applications of chemistry is gained
through problem work paralleling the lecture material. A number of plant inspection
trips are arranged during the year. Lectures and recitations, 3 hours
a week. (Fall, Winter, Spring.)

Textbooks: Badger and Baker: Inorganic Chemical Technology; Lewis and
Radasch: Industrial Stoichiometry; Riegel: Industrial Chemistry.

Associate Professor Hitchcock.

374-375-376: Chemical Engineering Laboratory:

The student demonstrates to himself essential features of the unit operations
of chemical engineering, by constructing and testing with his own hands
suitable apparatus for the illustration of principles in the parallel classroom
work. Under minimum supervision, he plans, builds, and tests such equipment as
orifices and other measuring apparatus, fluid flow devices verifying Fanning's
equation, apparatus for determination of heat transfer coefficients in the more
common cases, model vacuum pan sufficient to demonstrate the ordinary relationships
of evaporation, and packed columns for the absorption of gases in liquids.

The primary object of this course is to teach the students how to obtain
the data necessary for the interpretation of the unit operations in chemical
engineering. It is inevitable that at the same time, he gains a clearer understanding
of these operations, as well as facility in shop work and the use of his
hands, the preparation of working drawings, and the reduction of his results
to writing in the form of an acceptable report. Whether the apparatus is particularly
efficient, or even practicable from a production standpoint, is not regarded
as important at this stage.

The students work in small groups in order to make better use of the time,
and the results obtained by each group are made available to all through dependent
problem work in the classroom. 6 hours per week. (Fall, Winter,
Spring.) (This course will be required beginning 1936.)

Associate Professor Hitchcock.

383-384-385: Undergraduate Chemical Engineering Research:

Opportunity is afforded undergraduate students to obtain an introduction
to research methods in problems pertaining to chemical engineering. As a rule
the course is open to those who are taking the major portion of their work in
senior subjects, and who have had or are taking Chemical Engineering 324-325-326.
A minimum of nine hours per week for one term is required in the laboratory,
and it is expected that normally the students will continue the work through
the entire session. (An elective course for those having the time to apply to it.)

Associate Professor Hitchcock.


322

Page 322

386-387-388: Chemical Engineering Research:

This course is designed for candidates for the Ch. E. degree and affords an
introduction to research methods. Fundamental problems are selected, whenever
possible, from the field of greatest interest to the student. The method of attack
is in general to reduce the selected problem to laboratory scale leading to the
collection of basic data susceptible of definite interpretation, rather than to attempt
investigations on commercial equipment which usually yield empirical results.
The use of the chemical literature as an aid in conducting investigations
prefaces and accompanies the laboratory work, as well as practice in the mathematical
and graphical treatment of the data obtained.

The preparation and submission of a satisfactory thesis marks the completion
of this course, and is a partial fulfilment of the requirements for the Ch. E.
degree. Two copies of the thesis, typewritten on paper of prescribed quality and
size, and substantially bound, must be deposited in the office of the Dean of the
Department of Engineering not later than May 15 of the year in which it is expected
that the degree will be conferred. The back of the cover must bear the
title of the thesis and the writer's name, and the title page must bear the words:
A thesis presented to the Engineering Faculty of the University of Virginia in
candidacy for the degree of Chemical Engineer.
(Fall, Winter, Spring.)

Associate Professor Hitchcock.

Advanced Courses: A number of advanced courses in Chemistry, not
listed above, are described in the catalogue of the College. When time permits,
students in Chemical Engineering, who are properly prepared, may take such
of these courses as are approved by the Faculty of Engineering.

The Chemical Journal Club will meet once a week (hour to be arranged)
for the critical review and discussion of various topics of interest in current
chemical literature and of such chemical researches as are in progress in the
University. All members of the teaching staff and advanced students in chemistry
are expected to participate in these meetings and to take part in the discussions.