University of Virginia Library

Search this document 
Dictionary of the History of Ideas

Studies of Selected Pivotal Ideas
  
  

expand sectionV. 
expand sectionIV. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionV. 
expand sectionV. 
expand sectionII. 
expand sectionIV. 
expand sectionIV. 
expand sectionI. 
expand sectionI. 
expand sectionI. 
expand sectionVI. 
expand sectionV. 
expand sectionV. 
expand sectionVI. 
expand sectionVI. 
collapse sectionIII. 
  
expand sectionI. 
expand sectionVI. 
expand sectionI. 
expand sectionIII. 
expand sectionVI. 
expand sectionIII. 
expand sectionIV. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionIV. 
expand sectionVII. 
expand sectionV. 
expand sectionI. 
expand sectionIII. 
expand sectionIII. 
expand sectionIII. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionIII. 
expand sectionVI. 
expand sectionIII. 
expand sectionI. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionIV. 
expand sectionIV. 
expand sectionIV. 
expand sectionVI. 
expand sectionIV. 
expand sectionIII. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionV. 
expand sectionVI. 
expand sectionIII. 
expand sectionII. 
expand sectionI. 
expand sectionII. 
expand sectionVII. 
expand sectionI. 
expand sectionI. 
expand sectionIII. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionVII. 
expand sectionV. 
expand sectionV. 
expand sectionV. 

3. The Kinetic Definition of Entropy. Another
definition of entropy, which we owe to Ludwig Boltz-
mann, has been provided by the kinetic theory of gases.
Elaborating on J. C. Maxwell's famous statistical deri-
vation of the velocity distribution of gas molecules
under equilibrium conditions, Boltzmann studied the


115

change of this distribution f(v) under equilibrium ap-
proach and showed that f(v) always tends toward the
Maxwellian form (Boltzmann, 1872). Boltzmann ob-
tained this result by introducing a certain one-valued
function of the instantaneous state distribution of the
molecules, which he called the E-function and later
the H-function (Burbury, 1890), and of which he could
show, apparently on the basis of pure mechanics alone,
that it decreases until f(v) reaches the Maxwellian
form. His proof relied on the simple fact that the
expression (x - y) (log y - log x) is always negative
for positive numbers x and y. Since under equilibrium
conditions E turned out to be proportional to the
thermodynamic entropy, Boltzmann realized that his
E-function (or H-function) provides an extension of the
definition of entropy to nonequilibrium states not
covered by the thermodynamic definition.