Answer

Verified

456.6k+ views

**Hint:**There are ten seats in the bus and ten passengers board the bus in which $3$ refuse to go up and $2$ insist on going up. So they have to be given the seats according to their choice but the rest of the $5$ passengers can be seated in any order. So we will use the formula of combination to solve this question which is ${}^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n}}!}}{{{\text{r! n - r!}}}}$

**Complete step by step answer:**

Given, the total number of seats is $10$.The number of seats in the lower deck is $6$and in the upper deck is $4$.The number of passengers boarding the bus is also $10$.Now out of 10 passengers, $3$ refuses to go up and $2$ insists on going up. We know that the number of ways to select r things from n things $ = {}^{\text{n}}{{\text{C}}_{\text{r}}}$ and the number of ways the n seats can be filled is (n!). So the number of ways in which 2 out of 4 upper deck seats are selected and filled by the $2$ people who insist on going up $ = {}^4{{\text{C}}_2} \times 2!$

Similarly the number of ways in which the 3 out of 6 seats can be selected for the people, who refuse to go up, and filled by the 3 people $ = {}^6{{\text{C}}_3} \times 3!$. In this way 5 seats are filled, now only 5 seats and 5 people are left. So the number of ways in which $5$ seats can be filled by $5$people$ = 5!$

So the number of ways in which the passengers can be accommodated $ = {}^4{{\text{C}}_2} \times 2! \times {}^6{{\text{C}}_3} \times 3! \times 5!$

The formula of combination ${}^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n}}!}}{{{\text{r! n - r!}}}}$ where n is the total number of elements in a set and r are the number of elements to be selected, (!) is the sign of factorial. Here,${\text{n}}! = {\text{n}} \times \left( {{\text{n - 1}}} \right) \times ... \times 3 \times 2 \times 1 = {\text{n}} \times \left( {{\text{n}} - 1} \right)!$

On putting the given value in the formula we get-

The number of ways in which the passengers can be accommodated $ = \dfrac{{4!}}{{2!4 - 2!}} \times 2! \times \dfrac{{6!}}{{3!6 - 3!}} \times 3! \times 5! = \dfrac{{4!}}{{2!}} \times \dfrac{{6!}}{{3!}} \times 5!$

On simplifying we get,

$ \Rightarrow \dfrac{{4 \times 3 \times 2!}}{{2!}} \times \dfrac{{6 \times 5 \times 4 \times 3!}}{{3!}} \times 5! = 12 \times 120 \times 120 = 172,800$

Answer-The number of ways the passengers can be accommodated is

**$172,800$.**

**Note:**Combinations can be confused with permutations. However, in permutations, the order of the selected items is essential. A combination determines the number of possible arrangements in a collection of items where the order of the selection does not matter. The items can be selected in any order.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples for herbs , shrubs , climbers , creepers

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is BLO What is the full form of BLO class 8 social science CBSE