University of Virginia Library

Search this document 
Dictionary of the History of Ideas

Studies of Selected Pivotal Ideas
  
  
expand section 
  
expand section 
  
  

expand sectionVI. 
expand sectionV. 
expand sectionVI. 
expand sectionI. 
expand sectionVI. 
expand sectionV. 
expand sectionIII. 
expand sectionIII. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionV. 
expand sectionIII. 
expand sectionVII. 
expand sectionVI. 
expand sectionVI. 
expand sectionIII. 
expand sectionIII. 
expand sectionII. 
expand sectionI. 
expand sectionI. 
expand sectionI. 
expand sectionV. 
expand sectionVII. 
expand sectionVI. 
expand sectionV. 
expand sectionIII. 
expand sectionIII. 
expand sectionIII. 
expand sectionII. 
expand sectionI. 
expand sectionI. 
expand sectionI. 
expand sectionVI. 
expand sectionVII. 
expand sectionIII. 
expand sectionVII. 
expand sectionVII. 
expand sectionVII. 
expand sectionV. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionVII. 
expand sectionIII. 
expand sectionIV. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionV. 
expand sectionV. 
expand sectionIII. 
expand sectionIII. 
expand sectionVII. 
expand sectionIII. 
expand sectionI. 
expand sectionV. 
expand sectionV. 
expand sectionVII. 
expand sectionVI. 
expand sectionI. 
expand sectionI. 
expand sectionI. 
expand sectionI. 
expand sectionVI. 
expand sectionIII. 
collapse sectionIV. 
  
expand sectionIII. 
expand sectionIV. 
expand sectionIV. 
expand sectionIV. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionIII. 
expand sectionVI. 

BIBLIOGRAPHY

The works which mark the principal historical stages of
axiomatization have been indicated in the course of the
article. Among contemporary works which deal with axio-
matics, without being themselves axiomatic, are the follow-
ing: H. Scholz, Die Axiomatik der Alten (1930-31), reprinted
in Mathesis universalis (Basel-Stuttgart, 1961); F. Gonseth,
Les Mathématiques et la réalité, essai sur la méthode axio-
matique
(Paris, 1936); J. Cavaillès, Méthode axiomatique et
formalisme
(Paris, 1938); G. G. Granger, Pensée formelle et
sciences de l'homme
(Paris, 1960), esp. Ch. VI; W. and M.
Kneale, The Development of Logic (Oxford, 1962). For an
introductory exposition: R. Blanché, L'axiomatique (Paris,
1955), trans. as Axiomatics (London, 1962). Also A. Tarski,
Introduction to Logic and to the Methodology of the Deduc-
tive Sciences,
3rd ed. rev. (New York, 1965), pp. 140, 234ff;
R. L. Wilder, Introduction to the Foundations of Mathe-
matics
(New York, 1952); F. Enriques, Historic Development
of Logic,
trans. J. Rosenthal (New York, 1933).

ROBERT BLANCHÉ

[See also Abstraction in the Formation of Concepts; Mathe-
matical Rigor; Number; Structuralism.
]