University of Virginia Library

THE AURORA BOREALIS

If fire-balls were thought miraculous and portentous in days of yore, what interpretation must needs have been put upon that vastly more picturesque phenomenon, the aurora? “Through all the city,” says the Book of Maccabees, “for the space of almost forty days,


172

there were seen horsemen running in the air, in cloth of gold, armed with lances, like a band of soldiers: and troops of horsemen in array encountering and running one against another, with shaking of shields and multitude of pikes, and drawing of swords, and casting of darts, and glittering of golden ornaments and harness.” Dire omens these; and hardly less ominous the aurora seemed to all succeeding generations that observed it down well into the eighteenth century—as witness the popular excitement in England in 1716 over the brilliant aurora of that year, which became famous through Halley's description.

But after 1752, when Franklin dethroned the lightning, all spectacular meteors came to be regarded as natural phenomena, the aurora among the rest. Franklin explained the aurora—which was seen commonly enough in the eighteenth century, though only recorded once in the seventeenth—as due to the accumulation of electricity on the surface of polar snows, and its discharge to the equator through the upper atmosphere. Erasmus Darwin suggested that the luminosity might be due to the ignition of hydrogen, which was supposed by many philosophers to form the upper atmosphere. Dalton, who first measured the height of the aurora, estimating it at about one hundred miles, thought the phenomenon due to magnetism acting on ferruginous particles in the air, and his explanation was perhaps the most popular one at the beginning of the last century.

Since then a multitude of observers have studied the aurora, but the scientific grasp has found it as elusive in fact as it seems to casual observation, and its exact nature is as undetermined to-day as it was a hundred


173

years ago. There has been no dearth of theories concerning it, however. Blot, who studied it in the Shetland Islands in 1817, thought it due to electrified ferruginous dust, the origin of which he ascribed to Icelandic volcanoes. Much more recently the idea of ferruginous particles has been revived, their presence being ascribed not to volcanoes, but to the meteorites constantly being dissipated in the upper atmosphere. Ferruginous dust, presumably of such origin, has been found on the polar snows, as well as on the snows of mountain-tops, but whether it could produce the phenomena of auroras is at least an open question.

Other theorists have explained the aurora as due to the accumulation of electricity on clouds or on spicules of ice in the upper air. Yet others think it due merely to the passage of electricity through rarefied air itself. Humboldt considered the matter settled in yet another way when Faraday showed, in 1831, that magnetism may produce luminous effects. But perhaps the prevailing theory of to-day assumes that the aurora is due to a current of electricity generated at the equator and passing through upper regions of space, to enter the earth at the magnetic poles—simply reversing the course which Franklin assumed.

The similarity of the auroral light to that generated in a vacuum bulb by the passage of electricity lends support to the long-standing supposition that the aurora is of electrical origin, but the subject still awaits complete elucidation. For once even that mystery-solver the spectroscope has been baffled, for the line it sifts from the aurora is not matched by that of any recognized substance. A like line is found in the zo-


174

diacal light, it is true, but this is of little aid, for the zodiacal light, though thought by some astronomers to be due to meteor swarms about the sun, is held to be, on the whole, as mysterious as the aurora itself.

Whatever the exact nature of the aurora, it has long been known to be intimately associated with the phenomena of terrestrial magnetism. Whenever a brilliant aurora is visible, the world is sure to be visited with what Humboldt called a magnetic storm—a “storm” which manifests itself to human senses in no way whatsoever except by deflecting the magnetic needle and conjuring with the electric wire. Such magnetic storms are curiously associated also with spots on the sun—just how no one has explained, though the fact itself is unquestioned. Sun-spots, too, seem directly linked with auroras, each of these phenomena passing through periods of greatest and least frequency in corresponding cycles of about eleven years' duration.

It was suspected a full century ago by Herschel that the variations in the number of sun-spots had a direct effect upon terrestrial weather, and he attempted to demonstrate it by using the price of wheat as a criterion of climatic conditions, meantime making careful observation of the sun-spots. Nothing very definite came of his efforts in this direction, the subject being far too complex to be determined without long periods of observation. Latterly, however, meteorologists, particularly in the tropics, are disposed to think they find evidence of some such connection between sun-spots and the weather as Herschel suspected. Indeed, Mr. Meldrum declares that there is a positive coincidence


175

between periods of numerous sun-spots and seasons of excessive rain in India.

That some such connection does exist seems intrinsically probable. But the modern meteorologist, learning wisdom of the past, is extremely cautious about ascribing casual effects to astronomical phenomena. He finds it hard to forget that until recently all manner of climatic conditions were associated with phases of the moon; that not so very long ago showers of falling-stars were considered “prognostic” of certain kinds of weather; and that the “equinoctial storm” had been accepted as a verity by every one, until the unfeeling hand of statistics banished it from the earth.

Yet, on the other hand, it is easily within the possibilities that the science of the future may reveal associations between the weather and sun-spots, auroras, and terrestrial magnetism that as yet are hardly dreamed of. Until such time, however, these phenomena must feel themselves very grudgingly admitted to the inner circle of meteorology. More and more this science concerns itself, in our age of concentration and specialization, with weather and climate. Its votaries no longer concern themselves with stars or planets or comets or shooting-stars—once thought the very essence of guides to weather wisdom; and they are even looking askance at the moon, and asking her to show cause why she also should not be excluded from their domain. Equally little do they care for the interior of the earth, since they have learned that the central emanations of heat which Mairan imagined as a main source of aerial warmth can claim no such dis-


176

tinction. Even such problems as why the magnetic pole does not coincide with the geographical, and why the force of terrestrial magnetism decreases from the magnetic poles to the magnetic equator, as Humboldt first discovered that it does, excite them only to lukewarm interest; for magnetism, they say, is not known to have any connection whatever with climate or weather.