University of Virginia Library

Search this document 
Dictionary of the History of Ideas

Studies of Selected Pivotal Ideas
  
  
collapse section 
  
  
  
  
expand section 
  
  

expand sectionVI. 
expand sectionV. 
expand sectionVI. 
expand sectionI. 
expand sectionVI. 
expand sectionV. 
expand sectionIII. 
expand sectionIII. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionV. 
expand sectionIII. 
expand sectionVII. 
expand sectionVI. 
expand sectionVI. 
expand sectionIII. 
expand sectionIII. 
expand sectionII. 
expand sectionI. 
expand sectionI. 
expand sectionI. 
expand sectionV. 
expand sectionVII. 
expand sectionVI. 
expand sectionV. 
expand sectionIII. 
expand sectionIII. 
expand sectionIII. 
expand sectionII. 
expand sectionI. 
expand sectionI. 
expand sectionI. 
expand sectionVI. 
expand sectionVII. 
expand sectionIII. 
expand sectionVII. 
expand sectionVII. 
expand sectionVII. 
expand sectionV. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionVII. 
expand sectionIII. 
expand sectionIV. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionV. 
expand sectionV. 
expand sectionIII. 
expand sectionIII. 
expand sectionVII. 
expand sectionIII. 
expand sectionI. 
expand sectionV. 
expand sectionV. 
expand sectionVII. 
expand sectionVI. 
expand sectionI. 
expand sectionI. 
expand sectionI. 
expand sectionI. 
expand sectionVI. 
expand sectionIII. 
expand sectionIV. 
expand sectionIII. 
expand sectionIV. 
expand sectionIV. 
expand sectionIV. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionIII. 
expand sectionVI. 

2. Bruno will be remembered for a long time as a
bold and audacious soul, gifted with an unusually fiery
temperament. It was, however, by following the path
of observation that astronomy leaped forward with
Kepler and Galileo; the spirit of the times was all for
observation. It was a novel thing to devote so much
time and effort to determining the orbit of Mars, and
especially to do what Kepler did, not without anguish,
namely, to sacrifice doctrine for facts and the dogma
of the perfect circle for the evidence of the ellipse.
It would have been unthinkable, a half century earlier,
to perfect, as Galileo did, a magnifying lens as a tele-
scope directed towards unknowable celestial bodies,
and to accept the facts of a moon with mountains, a
sun soiled with spots, and celestial bodies woven out
of the same elements as the earth.

However, the victory of the sons of Heraclitus was
hotly disputed. What resisted change and the infinite
was not primarily, as is commonly believed, the con-


517

servatism of the Church and the Aristotelian School-
men, but rather a bundle of prejudices which occupied
the framework of their inner lives. It is hard to under-
stand today the moral collapse which the crumbling
of the immutable Firmament signified for the sons of
Parmenides. After losing the physical shelter and moral
asylum of that deathless sphere towards which he could
look for a refuge, man felt as exposed as a mollusk
whose shell is broken. In the Dialogues of Bruno and
of Galileo, the Parmenidean role is played by car-
icatured persons: “Where then is that beautiful order
and that elegant hierarchy of Nature?” moans Bruno's
critical interlocutor. Still the bewilderment and confu-
sion of Simplicius and his like are natural and worthy
of compassion. John Donne spoke the same language:
“... all coherence gone.” Even in the soul of the
innovators opposing reactions conflict with one another
and block progress.

The case of Kepler is typical. This great mind
brought together within himself in tense opposition
Heraclitus and Parmenides. He started from a dream
of classical harmony, from a Pythagorean worship of
numbers and shapes. He shied away from the Infinite,
because nobody could locate any determinate place
in it (De stella nova, 1606). He needed a hierarchy,
a special nobility for the Sun and the Earth. His uni-
verse has a center, it remains spherical, and his pro-
portions are based on the regular solids, perfect poly-
gons, and musical harmonies (Harmonice mundi, 1619).
Kepler made sure to integrate into this equilibrium the
discoveries of his own calculations: the elliptical orbits
of the planets and the inequalities of their motion.

But Kepler's geometric God is also an energetic God;
the fusion of these two natures was achieved at the
summit of Kepler's genius. The sun, image of the Fa-
ther, is the source of life and motion; from the central
astral body, there emanates a “moving force,” an “im-
material substance” which draws the planets, an idea
which came close to Newton's universal force of at-
traction. In Kepler's Pythagorean cosmos, we have the
first model of a dynamic universe, the first hint of
Energy.