University of Virginia Library

Search this document 
  

expand section1. 
collapse section2. 
 1. 
 2. 
 3. 
 4. 
 5. 
 6. 
 7. 
collapse section8. 
 1. 
 2. 
 3. 
DESTINY OF THE STELLAR SYSTEM
 4. 
 5. 
 6. 
 7. 
 2. 
 2. 
 2. 
  
 9. 
expand section10. 
expand section3. 

  
  

DESTINY OF THE STELLAR SYSTEM

We have said that the evolutionary processes depend primarily upon the loss of heat. This is to the best of our knowledge a genuine loss, except as some of the heat rays happen to strike other celestial bodies. The flow of heat energy from a star must be essentially continuous, always in one direction from hotter bodies to colder bodies, or into so-called unending and heatless space. Temperatures throughout the universe are apparently moving toward uniformity, at the level of absolute


182

zero. Now, this uniformity would mean universal stagnation and death. It is possible to have life and to do work only when there are differences of temperature between the bodies concerned: work is done or accompanied by a flow of heat, always from the hotter to the colder body. We are not aware that any compensating principle exists. Several students of the subject, notably Arrhenius, have searched for such a principle, a fountain of youth so to speak, in accordance with which the vigor of stellar life should maintain itself from the beginning of time to the end of time; but I think that nothing approaching a satisfactory theory has yet been formulated. The stellar universe seems, from our present point of view, to be slowly "running down.'' The processes will not end, however, when all the heat generable within the stars shall have been radiated into an endless space. Every body within the universe, it is conceivable, could have cooled down to absolute zero, but the system might still be in its youth. So long as the stars, whether intensely hot or free from all heat, are rotating rapidly on their axes or are rushing through space with high speeds, the system will remain very much alive. Collisions or very close approaches of two stars are bound to occur sooner or later, whether the stars are hot or cold, and in all such cases a large share of the kinetic energy—the energy of motion—of the two bodies will be converted into heat. A collision, under average stellar conditions, should convert the two stars into a luminous gaseous nebula, or two or more nebulæ, which would require hundreds or thousands of millions of years to evolve again into young stars, middle-aged stars, old stars, and stars absolutely cold. So long as any of these bodies retain motion with reference to other bodies, they retain the power of rebirth and another life. Not to go too far into speculative detail, the general effect of these processes would be the destruction of relative motions and the gradual decrease in the number of separate bodies, through coalescence. Assume further, however, that all existing bodies, widely scattered through the stellar system, are absolutely cold and absolutely at rest with reference to each other: the system might even then be only middle-aged. The mutual gravitations of the bodies would still be operative. They would pass each other closely, or collide, under high generated velocities: there would be new nebulæ, and new and vigorous stellar life to continue through other long ages. The system would not run down until all the kinetic energy had been converted into heat, and all the heat generable had been dissipated. This would not occur until all material in the universe had been combined into one body, or into two bodies in mutual revolution. However, if there are those who say that the universe in action is eternal, through the operation of compensating principles as yet undiscovered, no man of science is at present equipped to prove the contrary.