III. ATOMISM AND DISCONTINUITY
IN THEOLOGY
In the European West, atomism since Democritus
has been persistently
associated with forms of atheism,
or at least with suspicions of it. But,
as against this,
in the Islamic Middle East, in the tenth and eleventh
centuries A.D., when Islam's philosophy and theology
were at their height,
Islamic theologians—most of
whom were of Persian
extraction—based their ortho-
doxy,
which was philosophically articulated, on a radical
form of atomism and
discontinuity in nature. (For a
balanced recent account see M. Fakhry, Chs.
1 and
2.) From the Islamic approach it was the avowal of
continuity
which represented atheism, and the avowal
of discontinuity which
represented theism.
It is worth noting that a late Victorian scholar, a
leading one, finds
“Mephistophelian humor” in the fact
that Islamic
theists could embrace “atheistic” atomism.
The
scholar concludes that this came about because
Aristotle had depicted
Democritus so engagingly in-
stead of warning
theists against seeking refuge with
him (L. Stein, pp. 331-32).
This Islamic doctrine, whatever its origin, was part
of the so-called Kalam.
Its intent was not so much to
deny continuity as to deny causation, but it
strongly
correlated the two. And it denied causation, because
any
general law of causation would circumscribe, and
even inhibit God's freedom
of intervention and thau-
maturgy. Thus,
within this intellectual setting, the
physical atomism of the Kalam became
a scientific
occasionalism of its philosophy.
A famous account of this atomism is incorporated
in the Guide of the Perplexed (Maimonides, Part I, Chs.
71-75). As usual
with Maimonides, his report is some-
what
over-systematic, but the account seems very reli-
able and adequate. Now, according to this account,
the
Mutakallemim—that is, the professors of Kalam—
atomized, or rather quantized (in the sense of our
quantum theory)
everything: matter, space, time, and
motion.
Specifically they taught that the seemingly continu-
ous locomotion of a body is in fact not really continu-
ous but a succession of leaps between discretely
placed
positions; and they apparently took it for granted that
there
is a universal minimal distance between any two
positions. Also, what is
important, a leap from position
A to position B consists of two
interlocking subevents;
the original body in position A ceases to exist,
and an
“identical” body comes into being in position
B. This
sounds surprisingly like the leap of a Bohr electron,
when
rotating around a proton, from one energy level
into a neighboring one;
except that in the Kalam, the
second subevent follows on the first
“occasionalisti-
cally,” that is by an act of God, and not
“causally,”
that is by a law of nature.
Somewhat more occasionalistic, but still compatible
with our physics of
today, was the insistence of the
Mutakallemim that if a white garment turns
red by
being dipped into a red dye then it is wrong to say
that red
pigment has been transferred from the dye
to the garment. Rather, by God's
volition, an amount
of red pigment ceased to be in the dye, and a corre-
sponding amount of the pigment was
created in the
garment.
Most alien to our thinking is the “Hypothesis of
Admissibility.” It apparently asserted that anything
which is
“imaginable” is also possible. It is “imagin-
able” that man might be much
larger in size than he
is now, and he might indeed so be; in fact, he
might
be as large as a mountain. Fire usually goes upward,
but we can
“imagine” it going downwards, and so
indeed it might
go.
Even more striking than the atomistic pronounce-
ments, were the accompanying occasionalistic theses,
and the
latter were displayed most dazzingly in the
work of the Iranian Muslim
theologian al-Ghazali.
Nevertheless, they were leading Islamic
philosophical
thought into a cul-de-sac, and it was
very fortunate
for the nascent medieval civilization on the European
continent that the leading European schoolmen,
Muhammadan, Jewish, and
Christian, were refusing to
be drawn into this blind alley. In the twelfth
century,
the Spanish Jew Maimonides was opposed to the occa-
sionalistic doctrines of the Kalam,
and so were also,
very systematically, his contemporary Averroës
(a
Spanish Muslim), and, almost a century later, the Latin
schoolman
Thomas Aquinas in his Summa contra Gen-
tiles, Book III.
It is regrettable, though, that this opposition to the
Islamic occasionalism
also kept the West from becom-
ing generally
acquainted with its scientific atomism.
Saint Thomas, for instance, has
very little about it.
Almost a century after Aquinas, a Karaite
schoolman,
Aaron ben Elijah of Nicodemia (1300-69), who stood
intellectually between West and East, made a last
major attempt to keep
Islamic atomism alive, but to
no avail (Husik, Ch. 16).
It appears that the atomism of the Islam had been
greatly influenced by the
atomisms of Democritus and
Epicurus, but it is not easy to say why the
metaphysical
and religious evaluations were so divergent. It has been
suggested that Islamic philosophers were exposed to
Indian influences (S.
Pines), and also that a primitive
atomism may have arisen within the Kalam indige-
nously (O. Pretzl). There are intimations that, from
the
beginnings of Islamic thought there had been reflec-
tions, naive ones, on the concentration of space
and
matter in elemental units. Also, the problem of the
differences
between Islamic and Greek atomism is
compounded by the fact that there had
been diver-
gences of philosophy even
between Democritus and
Epicurus themselves.
It is reported that Democritus was of a serene dispo-
sition in his personal deportment. This serenity in
manners may have corresponded to a determinism in
scientific outlook which
takes it for granted that, ordi-
narily, the
physical constellation of today will deter-
mine the physical events of tomorrow. In the universe
of Democritus,
atoms were unceasingly in motion, by
fixed laws and unchangeable rhythms.
In the course
of their motions atoms would combine to form
“worlds”—which we may take to be solar systems,
or
galaxies, in our experience—and the worlds could also
fall apart by dissolution of the combinations of atoms
which constitute
them. Also, by their structure, the
worlds of Democritus were mostly
(spiral) vortices, and
once upon a time the vortices emanated from
some
kind of “turbulence,” that is, from some kind
of
“primordial chaos” (Diogenes Laërtius).
All this sounds astonishingly “modern.” Primordial
turbulence, and spiral-shaped galaxies are giant-sized
discontinuities in
nature, the account of which fills the
pages of any book on cosmogony of
today; and it must
not be held against the first atomists that they did
not
explain their provenance, because present-day cosmol-
ogy cannot explain it either (J. H. Oort, p. 20).
The system of Democritus was not “atheistic” in a
militant sense, but it was indifferent to divinity in a
passive sense.
Since everything in nature and life was
presumed to follow predictably by
laws and rhythms,
there was apparently no need, or rather no room, for
a Divine Providence that would affect the fate of man,
or the course of the
world, by acts of willed interven-
tion and
prodigy. Very much later though, mostly in
response to Islamic
occasionalism, the counterargu-
ment was
fashioned that it is noncontinuity and inde-
terminacy which bespeak the absence of divine Provi-
dence; and that it is continuity and causality in
nature
which testify to a rule by Providence and perhaps even
to an
original creation by a divine resolve.
While the system of Democritus has the mystique
of an incomparable classical
creation, the atomic sys-
tem of Epicurus, over a
century later, bears the mark
of an important but epigonic adaptation. It
had a great
appeal though. But the appeal was not due to the
power of
scientific inventiveness in Epicurus, who had
set
“Epicureanism” in motion, but to the beauty of
Lucretius'
De rerum natura in which it
is poetically
enshrined. The latter work is not an essay in science
but a poet's sweeping vision of the Great Chain of
Being in its manifold
manifestations; however, by some
irrationality of inspiration, which has
been a puzzle
to many a poet and literary critic since, Lucretius
transported his vision through the rather amorphous
medium of Epicurus'
system of knowledge, and thus
immortalized Epicurus' variant on atomism in
the
process. Democritus had been a physicist, first and
foremost, and
very genuinely so. Epicurus however was
first and foremost a moralist and a
social critic, even
if he elected to transmit his philosophemes in a
setting
of physical assumptions; and it was this humanism
which
attracted Lucretius to him.
With regard to discontinuity in the universe Lucre-
tius avers, as did Democritus long before him, that,
by
conjunction and disjunction of atoms, numerous
“galaxies” are formed and dissolved. He even alludes
to a primordial turbulence (nova tempestas), but,
re-
grettably, not to vortices (P.
Boyancé, p. 273). Lucre-
tius even
seems to suggest, in words of his own—what
is apparently not in
the extant reports about
Democritus—that the separate galaxies
of the universe
are likely to be distributed throughout the universe
with a certain uniform frequency of occurrence (De
rerum natura, Book II, lines 1048-66; C. Bailey, 2,
964-65).
Lucretius also has the significant report—which most
regrettably
does not occur in the extant remains of
Epicurus himself, but has also been
confirmed by
Cicero, Plutarch, and others—that the atom of Epi-
curus was endowed with a so-called clinamen of his
invention. It was a small-scale
swerving motion of the
atom, and Epicurus superimposed it on the
large-scale
rectilinear motion that had been advocated by De-
mocritus. This clinamen was designed to temper the
basic determinism of physics by
an element of inde-
terminism; and as a
suggestion in physics it was a
remarkable adumbration of indeterminacies in
the
physics of our day. But Epicurus, and his followers ever
since,
went much too far in using it as a physical
justification for
indeterminacies in the science of man,
namely as a justification for the
freedom of human will
and for man's self-mastery, in a moral, social,
and
theological sense.
Epicurus was adopted as the ancestral creator of the
nineteenth-century
Marxist doctrine that certain fixed
assumptions in physics are an unfailing
indicator of
certain fixed attitudes in sociology. Thus, the Dialectics
of Nature of Friedrich Engels, and, much
more shrilly,
the Materialism and Empirico-Criticism
(1908) of V. I.
Lenin, were proclaiming the doctrine that a philosophy
which affirms the primacy of human freedom must be
based on a certain kind of metaphysical
“materialism,”
and that this materialism must more or
less be predi-
cated on a form of atomism.
Developments in twentieth-century science have
been undermining the
possibilities of such firm corre-
lations.
In the nineteenth century there were firm
distinctions and separations
between materialism and
idealism, reality and imagination, phenomena and
ob-
jects, experience and theory,
experiments and explana-
tions. But in the
twentieth century, the spreading prin-
ciples
of duality for particle and field, for corpuscle
and wave, and the
progressive and unrelenting mathe-
matization of all of theoretical physics, have been
dissolving the
scientific foundations for such distinc-
tions and separations. Therefore, not only standard
“Marxist” tenets, but also, many other Victorian and
Edwardian correlations are losing their obvious justifi-
cations, and they will have to be re-thought from
the
ground up.