University of Virginia Library

Search this document 
  
  
  
  
 1. 
 2. 
 3. 
 4. 
  

expand section1. 
collapse section2. 
 1. 
 2. 
 3. 
 4. 
 5. 
 6. 
 7. 
 8. 
 9. 
 10. 
 11. 
Chapter 11 Recapitulation, Criticism, and Recommencement
 12. 
 13. 
 14. 
 15. 
 16. 
 17. 
 18. 
 19. 
 20. 
 21. 
 22. 
 23. 
 24. 

 1. 
 2. 
 3. 
 4. 
  
  

Chapter 11
Recapitulation, Criticism, and Recommencement

§89. Let us pause awhile to consider how far the contents of the foregoing chapters go towards forming a body of knowledge answering to the definition of Philosophy.

In respect of its generality, the proposition enunciated and exemplified in each chapter is of the required kind — is a proposition transcending those class-limits which Science, as currently understood, recognizes. "The Indestructibility of Matter" is a truth not belonging to mechanics more than to chemistry — a truth assumed alike by molecular physics and the physics that deals with sensible masses — a truth which the astronomer and the biologist equally take for granted. Not merely do those divisions of Science which deal with the movements of celestial and terrestrial bodies postulate "The Continuity of Motion," but it is no less postulated in the physicist's investigations into the phenomena of light and heat, and is tacitly if not avowedly, implied in the generalizations of the higher sciences. So, too, "The Persistence of Force," involved in each of the preceding propositions, is co-extensive with them, as is also its corollary, "The Persistence of Relations among Forces." These are not highly general truths; they are universal truths. Passing to the deductions drawn from them, we see the same thing. That force is transformable, and that between its correlates there exist quantitative equivalences, are ultimate facts not to be classed with those of mechanics, or thermology, or electricity, or magnetism; but they are frustrated throughout phenomena of every order. Similarly, the law that motion follows the line of least resistance or the line of greatest traction or the resultant of the two, we found to be an all-pervading law; conformed to alike by each planet in its orbit, and by, the moving matters, aerial, liquid, and solid, on its surface-conformed to no less by every organic movement and process than by every inorganic movement and process. And so, likewise, it has been shown that rhythm is exhibited universally, from the slow gyrations of double stars down to the inconceivably rapid oscillations of molecules — from such terrestrial changes as those of recurrent glacial epochs down to those of the winds and tides and waves; and is no less conspicuous in the functions of living organisms, from pulsations of the heart up to paroxysms of the emotions.

These truths have the character which constitutes them parts of Philosophy. They are truths which unify concrete phenomena belonging to all divisions of Nature; and so must be components of that all-embracing conception of things which Philosophy seeks.

§90. But now what parts do these truths play in forming such a conception? Does any one of them singly convey an idea of the Cosmos: meaning by that word the totality of the manifestations of the Unknowable? Do all of them taken in succession yield us an adequate idea of this kind? Do they even when thought of in combination compose anything like such an idea? To each of these questions the answer must be — No.

Neither these truths nor any other such truths, separately or jointly, constitute that integrated knowledge in which Philosophy finds its goal. It has been supposed by one thinker that when Science has reduced all more complex laws to some most simple law, as of molecular action, knowledge will have reached its limit. Another authority holds that all minor facts are so merged in the major fact that the force everywhere in action is nowhere lost, that to express this is to express "the constitution of the universe." But either conclusion implies a misapprehension of the problem.

For these are all analytical truths, and no analytical truth, nor any number of analytical truths, will make up that synthesis of thought which alone can be an interpretation of the synthesis of things. The decomposition of phenomena into their elements is but a separation for understanding phenomena in their state of composition, as actually manifested. To have ascertained the laws of the factors is not to have ascertained the laws of their co-operation. The thing to be expressed is the joint product of the factors under all its various aspects. A clear comprehension of this matter is important enough to justify some further exposition.

§91. Suppose a chemist, a geologist, and a biologist, have given the deepest explanations furnished by their respective sciences, of the processes going on in a burning candle, in a region changed by earthquake, and in a growing plant. To the assertion that their explanations are not the deepest possible, they will probably rejoin, "What would you have? What remains to be said of combustion when light and heat and the dissipation of substance have all been traced down to the liberation of molecular motion as their common cause? When all the actions accompanying an earthquake are explained as consequent upon the slow loss of the Earth's internal heat, how is it possible to go lower? When the influence of light on the oscillations of molecules has been proved to account for vegetal growth, what is the imaginable further rationale? You ask for a synthesis. You say that knowledge does not end with the resolution of phenomena into the actions of certain factors, each conforming to ascertained laws; but that the laws of the factors having been ascertained, there comes the chief problem — to show how from their joint action result the phenomena in all their complexity. Well, do not the above interpretations satisfy this requirement? Do we not, starting with the molecular motions of the elements concerned in combustion, build up synthetically an explanation of the light, and the heat, and the produced gases, and the movements of the produced gases? Do we not, setting out from the still-continued radiation of the Earth's heat, construct by synthesis a clear conception of its nucleus as contracting, its crust as collapsing, as becoming shaken and fissured and contorted and burst through by lava? And is it not the same with the chemical changes and accumulation of matter in the growing plant?"

To all which the reply is, that the ultimate interpretation to be reached by Philosophy, is a universal synthesis comprehending and consolidating such special syntheses. The synthetic explanations which Science gives, even up to the most general, are more or less independent of one another. Must there not be a deeper explanation including them? Is it to be supposed that in the burning candle, in the quaking Earth, and in the organism that is increasing, the processes as wholes are unrelated to one another? If it be admitted that each of the factors concerned always operates in conformity to a law, is it to be concluded that their co-operation conforms to no law? These various changes, artificial and natural, organic and inorganic, which for convenience sake we distinguish, are not from the highest point of view to be distinguished; for they are all changes going on in the same Cosmos, and forming parts of one vast transformation. The play of forces is essentially the same in principle throughout the whole region explored by our intelligence; and though, varying infinitely in their proportions and combinations, they work out results everywhere different, yet there cannot but be among these results a fundamental community. The question to be answered is — what is the common element in the histories of all concrete processes?

§92. To resume, then, we have now to seek a law of composition of phenomena, co-extensive with those laws of their components set forth in the foregoing chapters. Having seen that matter is indestructible, motion continuous, and force persistent — having seen that forces perpetually undergo transformations, and that motion, following the line of least resistance, is always rhythmic, it remains to find the formula expressing the combined consequences of the laws thus separately formulated.

Such a formula must be one that specifies the course of the changes undergone by both the matter and the motion. Every transformation implies re-arrangement of parts; and a definition of it, while saying what has happened to the sensible or insensible portions of substance concerned, must also say what has happened to the movements, sensible or insensible, which the rearrangement of parts implies. Further, unless the transformation always goes on in the same way and at the same rate, the formula must specify the conditions under which it commences, ceases, and is reversed.

The law we seek, therefore, must be the law of the continuous redistribution of matter and motion. Absolute rest and permanence do not exist. Every object, no less than the aggregate of all objects, undergoes from instant to instant some alteration of state. Gradually or quickly it is receiving motion or losing motion, while some or all of its parts are simultaneously changing their relations to one another. And the question is — What dynamic principle, true of the metamorphosis as a whole and in its details, expresses these ever-changing relations?