University of Virginia Library

Search this document 
  
  
  
  
  

collapse section1. 
  
  
  
  
collapse section2. 
  
  
  
collapse section 
  
  
  
  
collapse section 
  
Double Stars
  
  
  
  
  
collapse section3. 
  
  
  
  
  
collapse section 
  
  
collapse section4. 
  
  
  
  
  
  
  
collapse section5. 
  
  
collapse section 
  
  
  
collapse section6. 
  
  
  
  
collapse section7. 
  
  
  
  
  
  
collapse section8. 
  
  
  
  
  
  
  
 9. 

collapse section 
  
  
  
  
  
  
  
  
  

Double Stars

When John Herschel, the only son and the worthy successor of the great astronomer, began star-gazing in earnest, after graduating senior wrangler at Cambridge, and making two or three tentative professional starts in other directions to which his versatile genius impelled him, his first extended work was the observation of his father's double stars. His studies, in which at first he had the collaboration of Mr. James South, brought to light scores of hitherto unrecognized pairs, and gave fresh data for the calculation of the orbits of those longer known. So also did the independent researches of F. G. W. Struve, the enthusiastic observer of the famous Russian observatory at the university of Dorpat, and subsequently at Pulkowa. Utilizing data gathered by these observers, M. Savary, of Paris, showed, in 1827, that the observed elliptical orbits of the double stars are explicable by the ordinary laws of gravitation, thus confirming the assumption that Newton's laws apply to these sidereal bodies. Henceforth there could be no reason to doubt that the same force which holds terrestrial objects on our globe pulls at each and every particle of matter throughout the visible universe.

The pioneer explorers of the double stars early found that the systems into which the stars are linked are by no means confined to single pairs. Often three or four


58

stars are found thus closely connected into gravitation systems; indeed, there are all gradations between binary systems and great clusters containing hundreds or even thousands of members. It is known, for example, that the familiar cluster of the Pleiades is not merely an optical grouping, as was formerly supposed, but an actual federation of associated stars, some two thousand five hundred in number, only a few of which are visible to the unaided eve. And the more carefully the motions of the stars are studied, the more evident it becomes that widely separated stars are linked together into infinitely complex systems, as yet but little understood. At the same time, all instrumental advances tend to resolve more and more seemingly single stars into close pairs and minor clusters. The two Herschels between them discovered some thousands of these close multiple systems; Struve and others increased the list to above ten thousand; and Mr. S. W. Burnham, of late years the most enthusiastic and successful of double-star pursuers, added a thousand new discoveries while he was still an amateur in astronomy, and by profession the stenographer of a Chicago court. Clearly the actual number of multiple stars is beyond all present estimate.

The elder Herschel's early studies of double stars were undertaken in the hope that these objects might aid him in ascertaining the actual distance of a star, through measurement of its annual parallax—that is to say, of the angle which the diameter of the earth's orbit would subtend as seen from the star. The expectation was not fulfilled. The apparent shift of position of a star as viewed from opposite sides of the


59

earth's orbit, from which the parallax might be estimated, is so extremely minute that it proved utterly inappreciable, even to the almost preternaturally acute vision of Herschel, with the aid of any instrumental means then at command. So the problem of star distance allured and eluded him to the end, and he died in 1822 without seeing it even in prospect of solution. His estimate of the minimum distance of the nearest star, based though it was on the fallacious test of apparent brilliancy, was a singularly sagacious one, but it was at best a scientific guess, not a scientific measurement.