University of Virginia Library

Search this document 
  
  
  
  
  

collapse section1. 
  
  
  
  
collapse section2. 
  
  
  
collapse section 
  
  
  
Studies of the Moon
  
collapse section 
  
  
  
  
  
  
collapse section3. 
  
  
  
  
  
collapse section 
  
  
collapse section4. 
  
  
  
  
  
  
  
collapse section5. 
  
  
collapse section 
  
  
  
collapse section6. 
  
  
  
  
collapse section7. 
  
  
  
  
  
  
collapse section8. 
  
  
  
  
  
  
  
 9. 

collapse section 
  
  
  
  
  
  
  
  
  

Studies of the Moon

But perhaps the most interesting accomplishments of mathematical astronomy—from a mundane standpoint, at any rate—are those that refer to the earth's own satellite. That seemingly staid body was long ago discovered to have a propensity to gain a little on the earth, appearing at eclipses an infinitesimal moment ahead of time. Astronomers were sorely puzzled by this act of insubordination; but at last Laplace and Lagrange explained it as due to an oscillatory change in the earth's orbit, thus fully exonerating the moon, and seeming to demonstrate the absolute stability of our planetary system, which the moon's misbehavior had appeared to threaten.

This highly satisfactory conclusion was an orthodox belief of celestial mechanics until 1853, when Professor Adams of Neptunian fame, with whom complex analyses were a pastime, reviewed Laplace's calculation, and discovered an error which, when corrected, left about half the moon's acceleration unaccounted for.


48

This was a momentous discrepancy, which at first no one could explain. But presently Professor Helmholtz, the great German physicist, suggested that a key might be found in tidal friction, which, acting as a perpetual brake on the earth's rotation, and affecting not merely the waters but the entire substance of our planet, must in the long sweep of time have changed its rate of rotation. Thus the seeming acceleration of the moon might be accounted for as actual retardation of the earth's rotation—a lengthening of the day instead of a shortening of the month.

Again the earth was shown to be at fault, but this time the moon could not be exonerated, while the estimated stability of our system, instead of being re-established, was quite upset. For the tidal retardation is not an oscillatory change which will presently correct itself, like the orbital wobble, but a perpetual change, acting always in one direction. Unless fully counteracted by some opposing reaction, therefore (as it seems not to be), the effect must be cumulative, the ultimate consequences disastrous. The exact character of these consequences was first estimated by Professor G. H. Darwin in 1879. He showed that tidal friction, in retarding the earth, must also push the moon out from the parent planet on a spiral orbit. Plainly, then, the moon must formerly have been nearer the earth than at present. At some very remote period it must have actually touched the earth; must, in other words, have been thrown off from the then plastic mass of the earth, as a polyp buds out from its parent polyp. At that time the earth was spinning about in a day of from two to four hours.


49

Now the day has been lengthened to twenty-four hours, and the moon has been thrust out to a distance of a quarter-million miles; but the end is not yet. The same progress of events must continue, till, at some remote period in the future, the day has come to equal the month, lunar tidal action has ceased, and one face of the earth looks out always at the moon with that same fixed stare which even now the moon has been brought to assume towards her parent orb. Should we choose to take even greater liberties with the future, it may be made to appear (though some astronomers dissent from this prediction) that, as solar tidal action still continues, the day must finally exceed the month, and lengthen out little by little towards coincidence with the year; and that the moon meantime must pause in its outward flight, and come swinging back on a descending spiral, until finally, after the lapse of untold æons, it ploughs and ricochets along the surface of the earth, and plunges to catastrophic destruction.

But even though imagination pause far short of this direful culmination, it still is clear that modern calculations, based on inexorable tidal friction, suffice to revolutionize the views formerly current as to the stability of the planetary system. The eighteenth-century mathematician looked upon this system as a vast celestial machine which had been in existence about six thousand years, and which was destined to run on forever. The analyst of to-day computes both the past and the future of this system in millions instead of thousands of years, yet feels well assured that the solar system offers no contradiction to those laws of growth


50

and decay which seem everywhere to represent the immutable order of nature