![]() | CHAPTER SEVEN Miracle Mongers and Their Methods | ![]() |
7. CHAPTER SEVEN
THE SPHEROIDAL CONDITION OF LIQUIDS. —WHY THE HAND MAY BE DIPPED IN MOLTEN METALS.—PRINCIPLES OF HEAT-RESISTANCE PUT TO PRACTICAL USES: ALDINI, 1829.—IN EARLY FIRE-FIGHTING. TEMPERATURES THE BODY CAN ENDURE.
THE spheroidal condition of liquids was discovered by Leidenfrost, but M. Boutigny was the first to give this singular subject careful investigation. From time out of mind the test of letting a drop of water fall on the face of a hot flat-iron has been employed to discover whether it may safely be used. Everybody knows that if it is not too hot the water will spread over the surface and evaporate; but if it is too hot, the water will glance off without wetting the iron, and if this drop be allowed to fall on the hand it will be found that it is still cool. The fact is that the water never
By taking advantage of the fact that different
Through the action of this principle it is possible to dip the hand for a short time into melted lead, or even into melted copper, the moisture of the skin supplying a vapor which prevents direct contact with the molten metal; no more than an endurable degree of heat reaches the hand while the moisture lasts, although the temperature of the fusing copper is 1996°. The natural moisture of the hand is usually sufficient for this result, but it is better to wipe the hand with a damp towel.
In David A. Wells' Things not Generally
Known, New York, 1857, I find a translation
of an article by M. Boutigny in The Comptes
Beckmann, in his History of Inventions, Vol. II., page 122, says:
In the month of September, 1765, when I visited the copper works at Awested, one of the workmen, for a little drink money, took some of the melted copper in his hand, and after showing it to us, threw it against the wall. He then squeezed the fingers of his horny hand close together, put it for a few minutes under his armpit, to make it sweat, as he said; and, taking it again out, drew it over a ladle filled with melted copper, some of which he skimmed off, and moved his hand backwards and forwards, very quickly, by way of ostentation.
While I was viewing this performance, I remarked a smell like that of singed
The workmen at the Swedish melting-house showed the same thing to some travellers in the seventeenth century; for Regnard saw it in 1681, at the copper-works in Lapland.
My friend Quincy Kilby, of Brookline, Mass., saw the same stunt performed by workmen at the Meridan Brittania Company's plant. They told him that if the hand had been wet it would have been badly scalded.
Thus far our interest in heat-resistance has uncovered secrets of no very great practical value, however entertaining the uses to which we have seen them put. But not all the investigation of these principles has been dictated by considerations of curiosity and entertainment. As long ago as 1829, for instance, an English newspaper printed the following:
Proof against Fire—On Tuesday week an experiment was made in presence of a Committee of the Academy of Sciences at Paris, by M. Aldini, for the purpose of showing that he can secure the body
Sir David Brewster, in his Letters on Natural Magic, page 305, gives a more detailed account of Aldini, from which the natural deduction is that the Chevalier was a showman with an intellect fully up to the demands of his art. Sir David says:
In our own times the art of defending the hands and face, and indeed the whole body, from the action of heated iron and intense fire, has been applied to the nobler purpose of saving human life, and rescuing property from the flames. The revival and the improvement of this art we owe to the benevolence and the ingenuity of the Chevalier Aldini of Milan, who has travelled through all Europe to present this valuable gift to his species. Sir H.
The metallic dress which is superadded to these means of defence consists of five principal pieces, viz., a casque or cap, with a mask large enough to leave a proper space between it and the asbestos cap; a cuirass with its brassets; a piece of armour for the trunk and thighs; a pair of boots of double wire-gauze; and an oval shield 5 feet long by 2 1/2 feet wide, made by stretching the wire-gauze over a slender frame of iron. All these pieces are made of iron wire-gauze, having the interval between
In order to prove the efficacy of this apparatus, and inspire the firemen with confidence in its protection, he showed them that a finger first enveloped in asbestos, and then in a double case of wire-gauze, might be held a long time in the flame of a spirit-lamp or candle before the heat became inconvenient. A fireman having his hand within a double asbestos glove, and its palm protected by a piece of asbestos cloth, seized with impunity a large piece of red hot iron, carried it deliberately to the distance of 150 feet, inflamed straw with it, and brought it back again to the furnace. On other occasions the fireman handled blazing wood and burning substances, and walked during five minutes upon an iron grating placed over flaming fagots.
In order to show how the head, eyes, and lungs are protected, the fireman put on the asbestos and wire-gauze cap, and the cuirass, and held the shield before his breast. A fire of shavings was then lighted, and kept burning in a large raised chafing-dish; the fireman plunged his head into the
In the experiments which were made at Paris in the presence of a committee of the Academy of Sciences, two parallel rows of straw and brushwood supported by iron wires, were formed at the distance of 3 feet from each other, and extended 30 feet in length. When this combustible mass was set on fire, it was necessary to stand at a distance of 8 or 10 yards to avoid the heat. The flames from both the rows seemed to fill up the whole space between them, and rose to the height of 9 or 10 feet. At this moment six firemen, clothed in the incombustible dresses, and marching at a slow pace behind each other, repeatedly passed through the whole length between the two rows of flame, which were constantly fed with additional combustibles. One of the
In February, 1829, a still more striking experiment was made in the yard of the barracks of St. Gervais. Two towers were erected two stories high, and were surrounded with heaps of inflamed materials consisting of fagots and straw. The firemen braved the danger with impunity. In opposition to the advice of M. Aldini, one of them, with the basket and child, rushed into a narrow place, where the flames were raging 8 yards high. The violence of the fire was so great that he could not be seen, while a thick black smoke spread around, throwing out a heat which was unsupportable by spectators. The fireman remained so long invisible that serious doubts were entertained of his safety. He at length, however, issued from the fiery gulf uninjured, and proud of having succeeded in braving so great a danger.
It is a remarkable result of these experiments, that the firemen are able to breathe without difficulty in the middle of the flames. This effect is owing not only
A series of curious experiments were made on this subject by M. Tillet, in France, and by Dr. Fordyce and Sir Charles Blagden, in England. Sir Joseph Banks, Dr. Solander, and Sir Charles Blagden entered a room in which the air had a temperature of 198° Fahr., and remained ten minutes; but as the thermometer sunk very rapidly, they resolved to enter the room singly. Dr. Solander went in alone and found the heat 210°, and Sir Joseph entered when the heat was 211°. Though exposed to such an elevated temperature, their bodies preserved their natural degree of heat. Whenever they breathed upon a thermometer it sunk several degrees; every expiration, particularly if strongly made, gave a pleasant impression of coolness to their nostrils, and their cold breath cooled their fingers whenever it reached them. On touching
The same gentleman who performed the experiments above described ventured to expose themselves to still higher temperatures.
Our distinguished countryman, Sir F. Chantrey, has very recently exposed himself to a temperature still higher than any which we have mentioned. The furnace which he employs for drying his moulds is about 14 feet long, 12 feet high, and 12 feet broad. When it is raised to its highest temperature, with the doors closed, the thermometer stands at 350°, and the iron floor is red hot. The workmen often enter it at a temperature of 340°, walking over the iron floor with wooden clogs, which are of course charred on the surface. On one occasion Sir F. Chantrey,
![]() | CHAPTER SEVEN Miracle Mongers and Their Methods | ![]() |