University of Virginia Library

Search this document 
Dictionary of the History of Ideas

Studies of Selected Pivotal Ideas
  
  

expand sectionV. 
expand sectionIV. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionV. 
expand sectionV. 
expand sectionII. 
expand sectionIV. 
expand sectionIV. 
expand sectionI. 
expand sectionI. 
expand sectionI. 
expand sectionVI. 
expand sectionV. 
expand sectionV. 
expand sectionVI. 
expand sectionVI. 
expand sectionIII. 
expand sectionI. 
expand sectionVI. 
expand sectionI. 
expand sectionIII. 
expand sectionVI. 
expand sectionIII. 
expand sectionIV. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionIV. 
expand sectionVII. 
expand sectionV. 
expand sectionI. 
expand sectionIII. 
expand sectionIII. 
expand sectionIII. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionIII. 
expand sectionVI. 
collapse sectionIII. 
  
  
  
  
  
expand sectionI. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionIV. 
expand sectionIV. 
expand sectionIV. 
expand sectionVI. 
expand sectionIV. 
expand sectionIII. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionV. 
expand sectionVI. 
expand sectionIII. 
expand sectionII. 
expand sectionI. 
expand sectionII. 
expand sectionVII. 
expand sectionI. 
expand sectionI. 
expand sectionIII. 
expand sectionVI. 
expand sectionVI. 
expand sectionV. 
expand sectionVII. 
expand sectionV. 
expand sectionV. 
expand sectionV. 

1. Italy and Renaissance Influences. The tradition
perhaps most opposed to Scholasticism was that of
humanism, with its interest in classical antiquity, its
emphasis on the arts, and its general preference for
Plato over Aristotle. Writers such as Marsilio Ficino
and Erasmus ridiculed, respectively, the Paduan
Schoolmen and the “calculatory sophisms” of their
Parisian counterparts. Their overriding interest in
philology, moreover, led humanists to make much of
original texts, and, even in the case of Aristotle, to
confer unprecedented force on arguments from the
authority of the classical author. Yet they did make
available, in Greek and in accurate translation, the
mathematical and mechanical treatises of Euclid,
Archimedes, Apollonius, Pappus, Diophantus, and
Ptolemy—works that perforce had a salutary effect in
preparing for the new scientific mentality.

The writings of particular authors also contributed
in different ways to the coming revolution. Nicholas
of Cusa is important for his use of mathematical ideas
in elaborating his metaphysics, which prepared for the
transition, in Koyré's apt expression, “from the closed
world to the infinite universe.” He also placed great
emphasis on measurement, and preserved elements of
the medieval experimental tradition in his treatise on
“Experiments with Scales” (De staticis experi-
mentis
)—this despite the fact that most of his experi-
ments are purely fictitious and not one mentions a
numerical result. Leonardo da Vinci is perhaps over-
rated for his contributions to science, since his was
more the mentality of the engineer; his notebooks are
neither systematic nor lucid expositions of physical
concepts. Yet he too supplied an important ingredient,
wrestling as he did with practical problems of me-
chanics with great genius and technical ability. He
brought alive again the tradition of Jordanus Nemo-
rarius and Albert of Saxony, and his speculations on
kinematics and dynamics, if inconclusive, reveal how
difficult and elusive were the conceptual foundations
of mechanics for its early practitioners. Giordano
Bruno may also be mentioned as a supporter and suc-
cessor of Nicholas of Cusa; his works abound in Neo-
Platonism and mysticism, and show a heavy reliance
on Renaissance magic and the Hermetic-Cabalist tra-
dition. Of little importance for mechanics, his ideas
are significant mainly for the support they gave to
Copernicanism and to the concept of an infinite uni-
verse.

Of more direct influence, on the other hand, was
work done at the University of Padua under Averroist
and terminist influences. Aristotelianism flourished
there long after it had gone into eclipse at Oxford and
Paris, not so much in subordination to theology as it
was among Thomists, but rather under the patronage
of the Arab Averroës or of Alexander of Aphrodisias,
a Greek commentator on Aristotle. The Averroists
were Neo-Platonic in their interpretation of Aristotle,
whereas the Alexandrists placed emphasis instead on
his original text. Again, at Padua the arts faculty was
complemented not by the theology faculty but by the
inedical faculty; in this more secularized atmosphere
the scientific writings of Aristotle could be studied
closely in relation to medical problems and with much
aid from Arab commentators.

The result was the formation of a new body of ideas
within the Aristotelian framework that fostered, rather
than impeded, the scientific revival soon to be pio-
neered by the Paduan professor, Galileo Galilei.
Among these ideas some were methodological. They


204

derived from extended discussions of what Galileo
would refer to as the “method of analysis” (metodo
risolutivo
) and the “method of synthesis” (metodo com-
positivo
). Writers such as Jacopo Zabarella systema-
tized these results, showing how they could be applied
to detailed problems in physical science, thereby
bringing to perfection the methodology outlined by
Grosseteste, which has already been discussed.

More than a century before Zabarella, Paul of Venice
(Paolo Nicoletti), who had studied at Oxford in the late
fourteenth century, returned to Padua and propagated
Mertonian ideas among his students. A number of these
wrote commentaries on Heytesbury that were pub-
lished and widely disseminated throughout Europe.
Noteworthy is the commentary of Gaetano da Thiene,
who illustrated much of Heytesbury's abstract reason-
ing on uniform and difform motions with examples
drawn from nature and from artifacts that might be
constructed from materials close at hand. As far as is
known this fifteenth-century group performed no ex-
periments or measurements, but they took a step closer
to their realization by showing how “calculatory”
techniques were relevant in physical and medical in-
vestigations.